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Unifying Themes

• Forced Alignment of Found Data
• Input: Audio + Text
• Output Timestamps: words, phones, silences

• Technologies
• Machine Learning: Classification/Boosting/ERNIE/BERT
• Fine-Tuning of language models with pauses (from audio)

• Audio + Text are better together

• Linguistic Questions
• Phrase final lengthening: 

• Some ``units’’ are ``longer’’ than ``otherwise’’ in certain ``contexts’’
• t/d deletion

• Some ``units’’ are ``deleted’’ in certain ``contexts’’

• Practical Questions
• Dementia Challenge: Distinguish AD from controls
• Observation: Pauses are helpful 

• (Intuitively, disfluencies ~ more pauses, laughter, etc.)

Found Data Size 
(M words)

Audio Books 111.4
SCOTUS 70.0
Audio BNC 7.1
Tedlium 5.7
History 5.0
Presidential 1.5

CommonVoice 0.7



Longer

Shorter

Duration Modeling

• Phrase final lengthening
• Words are longer than ``otherwise’’
• before phrase boundary (silence)

• But how do we define ``otherwise’’?



0.3 seconds is shorter than ``otherwise’’
0.5 seconds is longer than ``otherwise’’

Conjunction: Narrow Scope (0.3 sec)
• I met [Mary and Elana]’s mother 

at the mall yesterday

Conjunction: Wide Scope (0.5 sec)
• [I met Mary] and [Elana’s

mother] at the mall yesterday



Phrase Final Lengthening & Parsing

Conjunction: Narrow Scope (0.3 sec)
• I met [Mary and Elana]’s mother 

at the mall yesterday

Conjunction: Wide Scope (0.5 sec)
• [I met Mary] and [Elana’s

mother] at the mall yesterday

19,249 Mary’s

relatively shortrelatively short
relatively longrelatively long



Percentile Transform

• Word Duration (seconds vs. percentiles)
• Seconds (from forced alignments)
• Percentiles: 

• based on durations of the same word in many other contexts
• a definition of ``otherwise’’

• Train:
• Collect a large corpus of words (𝑥) and durations (𝑦)
• Fine tune transformer (ERNIE/BERT) to predict %𝑦 from 𝑥

• Inference
• Input sequence of words (𝑥); output sequence of predictions ( %𝑦)

• Evaluation: Loss = sec(𝑤𝑜𝑟𝑑, *𝑦) − 𝑦
• where sec(𝑤𝑜𝑟𝑑, %𝑦) converts prediction to seconds, if necessary

• if prediction is already in seconds à do nothing (identity function)
• if prediction is a percentile à invert the percentile transform



Evaluation
• Four conditions for training

• duration: 
• measured in seconds
• measured in percentiles

• silences: 
• included in training
• excluded from training

• Testing
• Apples to apples

• Convert all predictions to seconds 
• Evaluate on words (not silences)

• For each token in test set %𝑦 − 𝑦
• where y is observed duration (in seconds)
• and !𝑦 is the prediction from model 

• (converted to seconds, if necessary)

• Observations:
• Percentile transform reduces loss
• Ditto for silences (though less so)

Better

Percentiles with Silences
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Extensions

• Word durations depend on many factors
• Word (type)
• Context (other words near a particular mention), silences, phrasing
• Emphasis/Accent/emotion
• Speaker
• Speaking Rate

• Percentile transform (and its inverse transform)
• can be extended to depend not only on word and context
• but many additional factors (conditioned on each audio book)
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Detection and analysis of T/D deletion in Librispeech



t/d deletion

• Categorical?
0 (deletion), 1 (full realization), 2 (partial realization)

• Manual annotation on t/d deletion (binary): 80% agreement



Softmax-based features
+

LightGBM classification

0                       1                     2
[0.05               0.20              0.75]

Automatic identification (1)

Forced alignment

t/d 



• Step 1: Forced alignment

• Skip-state HMMs for word-final /t/ and /d/

• Which can identify t/d deletion with 79.1% accuracy on TIMIT

• duration = 0 ↔ t/d deletion

• better than using alternative pronunciations (73.6%)
best  /B EH1 S T/
best  /B EH1 S/

Automatic identification (2)



• Step 2: Extract features

• At Three points
• Onset, center, offset
• Three times at the same position if duration = 0

• Softmax-based features
• Kaldi/TDNN trained on Librispeech
• 70-dim feature vector: 69 phonemes (with stress) + sil

Automatic identification (3)



• Step 3: LightGBM classification
• Combine decision trees (weak learners) to minimize the loss 

function (gradient boosting).

Automatic identification (4)



• Evaluation
• TIMIT

• Based on phone transcription
• Labels: 0 (no transcription), 1 (/t, d, dx, jh/), and 2 (/ tcl, dcl, q/).

• Librispeech
• Manually annotated 1,800 tokens
• Labels: 0, 1, 2

• Accuracy of two-class classification
• Deletion (0); No deletion (1,2)

Forced alignment 
(skip-state HMMs)

LightGBM after  
forced alignment

TIMIT 79.1% 93.7%
Librispeech 80.6% 86.7%

Automatic identification (5)



Large scale analysis (1)

• Data: Librispeech

• excluding:
• Uncommon words (frequency < 100)
• The word “and” (frequency > 300,000)

• word-final t/d preceded by a consonant

• 502,481 tokens, 818 word types

• Classification

• Forced aligner and TDNN were trained on entire Librispeech

• LightGBM was trained on manually annotated Librispeech data



Large scale analysis (2)

• Statistical significance

• Logistic regression
Six main factors: t/d, preceding phone, following phone, 
morphological class, word frequency, PND

• All main factors except word frequency have a significant effect.



Conclusions
• We developed a new method for automatic identification of t/d deletion in 

continuous speech. Our method achieved 93.7% accuracy on TIMIT and 86.7% 
on human-annotated data from Librispeech.

• A large scale analysis on Librispeech showed that word frequency was not a 
significant factor in determining the rate of t/d deletion, although the 
interactions between word frequency and other factors were significant.

• Phonological Neighborhood Density showed a much stronger effect on t/d 
deletion than word frequency. t/d is less likely to be deleted when PND is 
higher (i.e., having more neighbors). 

• Our results on the effects of phonological and morphological factors are largely 
consistent with previous studies.
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Detection of Alzheimer’s disease



The ADReSS Challenge

• Alzheimer's Dementia Recognition through Spontaneous Speech
• Dataset:

• Training: 108 recordings + transcripts; 54 control + 54 ad
• Test: 48 recordings + transcripts

• Tasks:
• A binary classification of AD and non-AD
• To predict scores of Mini-Mental State Examination (MMSE)





Classification method and experiments

• Step 1: Forced alignment and pause encoding

• Step 2: Fine-tuning BERT/ERNIE using pause-inserted text

• Step 3: Ensemble over many runs of fine-tuning



Forced alignment and pause encoding



Fine-tuning BERT/ERNIE for AD classification 



• Using multi-head self-attention to capture associations among words.
• has more than 100M parameters
• pretrained on billions of words (wikipedia, bookcorpus, etc.)

BERT
Bidirectional Encoder Representations from Transformers 

“Attention Is All You Need”



Results and conclusions

• Evaluation on the test set (majority vote of 35 runs):

1. Disfluencies and language problems in Alzheimer’s Disease can be naturally 
modeled by fine-tuning Transformer-based pre-trained language models.

2. The best accuracy was obtained with ERNIE, plus an encoding of pauses.

3. We found that um was used much less frequently in Alzheimer’s speech.
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